∏
𝔈
υ
τ
ρ
σ
𝔇
π
ο
ν
ξ
𝔄
δ
γ
α
β
𝔅
θ
η
ε
ζ
𝔉
ω
ψ
ϕ
χ
ℭ
μ
λ
ι
κ
∀
A
∃
P
∀
B
B
∈
P
⟺
∀
C
C
∈
B
⇒
C
∈
A
Logic:
¬
p
∧
q
⟺
¬
p
∨
¬
q
Boolean algebra:
⋃
i
=
1
n
A
i
‾
=
⋂
i
=
1
n
A
i
‾
x
=
−
b
±
b
2
−
4
⁢
a
⁢
c
2
⁢
a
C
n
k
=
C
k
n
=
C
k
n
=
n
k
=
n
!
k
!
⁢
n
−
k
!
∫
0
1
x
x
⁢
ⅆ
x
=
∑
n
=
1
∞
−
1
n
+
1
⁢
n
−
n
c
=
a
⏟
real
+
b
⁢
ⅈ
⏟
imaginary
⏞
complex number
M
=
α
1
α
1
q
…
α
1
q
n
−
1
α
2
α
2
q
…
α
2
q
n
−
1
⋮
⋮
⋱
⋮
α
m
α
m
q
…
α
m
q
n
−
1
Spherical coordinates derivation of the volume of a sphere
4
3
⁢
π
R
3
.
The formula
S
for a sphere of radius
R
in spherical coordinates is:
S
=
0
≤
ϕ
≤
2
⁢
π
0
≤
θ
≤
π
0
≤
ρ
≤
R
Volume
=
∭
S
ρ
2
⁢
sin
⁡
θ
⁢
ⅆ
ρ
⁢
ⅆ
θ
⁢
ⅆ
ϕ
=
∫
0
2
⁢
π
ⅆ
ϕ
⁢
∫
0
π
sin
⁡
θ
⁢
ⅆ
θ
⁢
∫
0
R
ρ
2
⁢
ⅆ
ρ
=
ϕ
|
0
2
⁢
π
⁢
−
cos
⁡
θ
|
0
π
⁢
1
3
⁢
ρ
3
|
0
R
=
2
⁢
π
×
2
×
1
3
⁢
R
3
=
4
3
⁢
π
R
3
1
+
2
+
3
+
4
+
5
+
6
+
7
+
A
19
17
13
11
7
5
3
ⅇ
π
=
x
‴
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
b
1
b
2
b
3
b
4
0
 
c
1
c
2
c
3
c
4